Molecular Packing Modes. Part VI. ${ }^{1}$ Crystal and Molecular Structures of Two Modifications of Tetrolic Acid

By V. Benghiat and L. Leiserowitz," Department of Chemistry, Weizmann Institute of Science, Rehovot, Israel
The crystal structures of the α - and β-forms of tetrolic acid have been determined from X-ray diffractometer data. Crystals of the α-form are triclinic, space group $P \overline{1}, Z=2, a=7.320, b=5.099 . c=7.226 \AA . \alpha=83.97, \beta=$ $117 \cdot 46, \gamma=112 \cdot 00^{\circ}$. The structure was refined to $R 0.07$ for 985 reflections. The molecules form hydrogenbonded cyclic dimers ($\mathrm{O} \cdot \mathrm{O} 2 \cdot 649 \AA$) in which the C-O bond lengths are almost equal ($1 \cdot 252,1 \cdot 265 \AA$). Half hydrogens 'were attached to each oxygen. their parameters refined. and their presence substantiated by a differenceFourier synthesis. The methyl hydrogen atoms were located.
The structure of the monoclinic β-modification $\left[a=7.887, b=7 \cdot 121, c=3.937 \AA . \beta=100 \cdot 18^{\circ}, Z=2\right.$. $P 2_{1}$] was refined from counter data to $R 0.04$ (687 reflections). The methyl hydrogen atoms were located. The bond lengths within the carboxylic group are distinct: $\mathrm{C}=01$ 1-204, $\mathrm{C}-\mathrm{O} 1.310 \AA$; the hydroxy-hydrogen was clearly evident. The molecules form a continuous array of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=$ hydrogen bonds ($\mathrm{O} \cdots \mathrm{O} 2.655 \mathrm{~A}$) between molecules related by a two-fold screw axis similar to the arrangement in the structure of formic and acetic acids.
The carbon-carbon bond lengths of the α - and β-forms are: $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} 1 \cdot 458,1 \cdot 455, \mathrm{C} \equiv \mathrm{C} 1 \cdot 182.1 \cdot 178$, and $\mathrm{C}-\mathrm{CO}_{2} \mathrm{H} 1 \cdot 441,1 \cdot 441 \mathrm{~A}$.

The structure analyses of two crystal modifications of tetrolic acid were undertaken as part of a programme on the packing modes of carboxylic acids. The existence of two forms, one crystallising in a centrosymmetric, the other in an acentric space group, seemed a priori to suggest the existence of two basically different packing arrangements of the same molecule; their parallel investigation might throw light on the effects of packing geometry on the apparent bond lengths in the carboxygroup, more particularly as the investigation of two crystal forms of the same molecule would also provide an
${ }^{1}$ Part V, V. Benghiat, H. W. Kaufman, L. Leiserowitz, and G. M. J. Schmidt, preceding paper.
external estimate of the accuracy of bond-length measurements.

EXPERIMENTAL

Tetrolic acid (I) crystallised by slow evaporation from n -pentane solution, yielded a triclinic (α) and a monoclinic (β) form. The α-crystals are rhombic in shape and bounded by $\{100\},\{10 \overline{1}\}$, and $\{120\}$; the β-dimorph grows in thin plates showing $\{100\}$ and $\{010\}$. The latter is converted at $56-58{ }^{\circ} \mathrm{C}$ into the triclinic modification m.p. $77-78{ }^{\circ} \mathrm{C}$. The reverse change $\alpha \rightarrow \beta$, could not be observed when the α-form was cooled to room temperature. The crystals of both forms are soft, easily deformable, and deliquescent;
specimens for intensity measurements were enclosed in sealed capillaries of Lindemann glass.

Labelling of atoms employed in this structure analysis
The cell parameters of the two forms were determined by a least-squares analysis of high-angle spectra ($2 \theta>120$, $\mathrm{Cu}-K_{\alpha}$ radiation) measured on a General Electric goniostat.

Crystal Data.-(i) α-Tetrolic acid. $\quad \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}, M=84 \cdot \mathbf{4}$. Triclinic, $a=7 \cdot 320(1), b=5 \cdot 099(1), c=7 \cdot 226(1) \AA, \alpha=$ 83.97(1), $\quad \beta=117 \cdot 46(1), \quad \gamma=112 \cdot 00(1)^{\circ}, \quad U=221 \cdot 1 \AA^{3}$, $Z=2, D_{\mathrm{c}}=1 \cdot 266, F(000)=88$. Space group $P 1$ or $P \overline{\mathrm{I}}$. The latter space group established as correct by the present analysis. $\quad \mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5405 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=$ $9.0 \mathrm{~cm}^{-1}$.
β-Tetrolic acid, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}$. Monoclinic, $a=7.887(1), b=$ $7 \cdot 121(1), \quad c=3.937(1) \AA, \quad \beta=100 \cdot 18(1)^{\circ}, \quad U=217 \cdot 6 \AA^{3}$, $Z=2, D_{\mathrm{c}}=1 \cdot 287, F(000)=88$. Space group $P 2_{1}$ from systematic absences $0 k 0$ for k odd. Mo- K_{α} radiation, $\lambda=$ $0.70926 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=1.1 \mathrm{~cm}^{-1}$.

Data Collection.-(i) α. A crystal of dimensions $0.28 \times$ $0.46 \times 0.56 \mathrm{~mm}$ (bounded by faces $001,00 \overline{1}, 10 \overline{1}, \overline{1} 01,120$, and 120) was mounted along b^{*} on a General Electric goniostat; the intensities within a hemisphere of reciprocal space were recorded by means of an $\omega-2 \theta$ scan with Nifiltered $\mathrm{Cu}-K_{\alpha}$ radiation. The intensity scanning range included the $K_{\alpha, 1}$ and $K_{\alpha, 2}$ peaks. The background was measured over the same 2θ range, but with the crystal offset by 1.0° in the ω-direction.
(ii) β. A crystal of dimensions $0.68 \times 0.26 \times 0.89 \mathrm{~mm}$ (bounded by faces $010,0 \overline{1} 0,100,100,001$, and $00 \overline{\mathrm{I}}$) was mounted along c^{*} on a paper-tape controlled Siemens diffractometer; the $I(h k l)$ and $I(h k l)$ were recorded for $\sin \theta / \lambda \leq 0.71$ with Mo- K radiation filtered with a set of balanced zirconium and yttrium metal foils. Intensities were measured by means of the $\omega-2 \theta$ technique. The mode of intensity measurement and treatment of the data have been described elsewhere. ${ }^{2,3}$

Absorption corrections ${ }^{4}$ were applied to both forms in the data-reduction programme. 985 (including 76 unobserved) and 687 (including 116 unobserved) independent reflections were measured for the α - and β-forms respectively.

Structure Determination.-The centrosymmetric space group $P \overline{1}$ of the α-form was indicated by the statistical $N(z)$ test ${ }^{5}$. A planar centrosymmetric hydrogen-bonded system (II) was then assumed as the molecular model and

the structure solved by means of SEARCH. ${ }^{6}$ As the methyl hydrogens had been excluded from the model the programme yielded 34 trial structures; the R of one of these converged to 0.20 when tested in a rigid-body least-squares
${ }^{2}$ H. Irngartinger, L. Leiserowitz, and G. M. J. Schmidt, J. Chem. Soc. (B), 1970, 497.
${ }^{3}$ H. Irngartinger, L. Leiserowitz, and G. M. J. Schmidt, Chem. Ber., 1970, 103, 1119.
${ }_{4}$ P. Coppens, L. Leiserowitz, and D. Rabinovich, Acta Cryst., 1965, 18, 1035.
programme on the 30 lowest-order reflections. Individual atomic parameters of this model were refined, first with isotropic and then anisotropic thermal parameters, from all the reflections.

The methyl hydrogen atoms were located on an electrondensity difference synthesis (Figure 1). Although the

Figure $1 \quad \alpha$-Tetrolic acid. Electron-density difference-Fourier map showing the methyl hydrogen atom positions. The refined positions are marked with a cross. Contour intervals are $0.03 \mathrm{e}^{-3}$
hydrogen atoms appeared to show pronounced libratory motion about the methyl bond axis, their positional and isotropic thermal parameters were refined.

At this stage the two $\mathrm{C}-\mathrm{O}$ bonds were equal in length (1.255 and $1.267 \AA$). As we could not assign hydrogens to either oxygen on the basis of their $\mathrm{C}-\mathrm{O}$ bond lengths two

Figure 2α-Tetrolic acid. Electron-density difference-Fourier synthesis in the plane of the carboxylic acid dimer. Full, dashed, and dotted lines correspond to positive, zero, and negative contours respectively at intervals of $0.05 \mathrm{e}^{-3}$
'half-hydrogens ' $\left[\frac{1}{2} \mathrm{H}(\mathbf{1})\right.$ and $\left.\frac{1}{2} \mathrm{H}\left(\mathbf{l}^{\prime}\right)\right]$ were inserted along the O . . O line $1 \AA$ from each oxygen, and their positional and thermal parameters refined. The two 'half-hydrogens' were located 0.87 and $0.76 \AA$ from their nearest oxygen atoms, with temperature factors of 0.094 and $0.065 \AA^{2}$. The two $\mathrm{C}-\mathrm{O}$ bond lengths were then 1.252 and $1.265 \AA$.

A difference-Fourier synthesis $\delta(x y z)$ in the plane of the carboxy-group based on all atoms except the two 'halfhydrogens ' (Figure 2) showed two resolved peaks of heights 0.20 and $0.26 \mathrm{e}^{-3}$ in the $\mathrm{O} \cdots$ O region. The final agreement factors were $R 0.07$ and $R^{\prime} 0.029$ for all 958 reflections $\left[R^{\prime}=\Sigma w\left(k^{2} F_{\mathrm{o}}^{2}-\left|F_{\mathrm{c}}\right|^{2}\right)^{2} / \Sigma \omega k^{4} F_{\mathrm{o}}{ }^{4}\right]$.
${ }^{5}$ E. R. Howells, D. C. Phillips, and D. Rogers, Acta Cryst., 1950, 3, 210.
${ }^{6}$ D. Rabinovich and G. M. J. Schmidt, Nature, 1966, 211, 1391.

The structure of the β-form was solved by direct phase determination via a modification of a multi-solution method outlined by Germain and Woolfson. ${ }^{7}$ The details of the phase determination of β-tetrolic acid have already been described. ${ }^{8}$

The structure was refined in a manner similar to that for α-tetrolic acid. The methyl hydrogen atoms were located on a difference-Fourier synthesis (Figure 3); the hydroxy-

Figure 3β-Tetrolic acid. Electron-density difference-Fourier map showing the methyl hydrogen atom positions. The refined positions are marked with a cross. Contour intervals are $0.03 \mathrm{e}^{-3}$
hydrogen was attached to the oxygen with the longer $\mathrm{C}-\mathrm{O}$ bond (1.310 vs. $1.204 \AA$). After refinement with anisotropic temperature parameters for all but the hydrogen atoms, a difference-Fourier synthesis $\delta(x y z)$, based on all atoms except $\mathrm{H}(1)$ and computed in the plane of the carboxy-group, clearly revealed the position of the hydroxy-hydrogen $0.9 \AA$ from $\mathrm{O}(\mathrm{l})$ (Figure 4).

Figure 4β-Tetrolic acid. Electron-density difference-Fourier synthesis in the plane of the carboxy-group. Full, dashed, and dotted lines correspond to positive, zero, and negative contours respectively at intervals of $0.05 \mathrm{e}^{-3}$

The final agreement factors were $R \quad 0.040$ and $R^{\prime} 0.006$. The scattering factor curves for carbon and oxygen were taken from ref. 9 and for hydrogen from ref. 10. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 20326 (4 pp., 1 microfiche).*

RESULTS AND DISCUSSION

Tables 1 and 2 list the experimental positional and thermal parameters of α - and β-tetrolic acids, together with their estimated standard deviations.

* For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . are sent as full-size copies).
${ }^{7}$ G. Germain and M. M. Woolfson, Acta Cryst., 1968, B, 24, 91.

Molecular Shape.-Table 3 lists the deviations from the best planes through all heavy atoms, the carboxygroup, and the hydrogen-bonded carboxylic acid pairs. The mean deviations from these planes are, for α tetrolic acid, $0.003,0.003$, and $0.02 \AA$, and, for the β-acid, $0.002,0.002$, and $0.07 \AA$.

Table 1
Atomic co-ordinates (fractional) and standard deviations referred to axes a, b, c

(a) α-Tetrolic acid			
Atom	x	y	z
$\mathrm{O}(1)$	$0 \cdot 10354(21)$	$-0 \cdot 18298(30)$	-0.08840(17)
$\mathrm{O}(2)$	$0 \cdot 20729(25)$	$-0.03837(31)$	0.23758(19)
C(1)	$0 \cdot 22650(22)$	$-0 \cdot 15506(29)$	$0 \cdot 10491$ (22)
C(2)	$0 \cdot 40114(25)$	-0.26578(33)	$0 \cdot 18690$ (24)
$\mathrm{C}(3)$	$0.54811(24)$	$-0.35030(34)$	$0 \cdot 26073$ (24)
C(4)	$0 \cdot 72987$ (33)	$-0.45366(50)$	$0 \cdot 35451(31)$
$\frac{1}{2} \mathrm{H}(1)$	-0.0092(89)	$-0.1378(110)$	$-0 \cdot 1185(83)$
$\frac{1}{2} \mathrm{H}\left(\mathrm{l}^{\prime}\right)$	$0 \cdot 1085(70)$	$0 \cdot 0049$ (89)	$0 \cdot 2041$ (66)
H(2)	$0 \cdot 7470(46)$	$-0.4939(69)$	$0 \cdot 2467$ (55)
$\mathrm{H}(3)$	$0 \cdot 6815(36)$	$-0.6372(52)$	$0 \cdot 4242(48)$
H(4)	0.8584(43)	$-0.3126(55)$	$0 \cdot 4429(39)$
(b) β-Tetrolic acid			
Atom	x	y	z
$\mathrm{O}(1)$	$0 \cdot 82242(23)$	$0 \cdot 45385(41)$	$0 \cdot 15657(62)$
$\mathrm{O}(2)$	1.01637(19)	$0 \cdot 25317(42)$	$0 \cdot 03280$ (54)
$\mathrm{C}(1)$	$0 \cdot 88422(25)$	$0 \cdot 28421(50)$	$0 \cdot 13615(59)$
C(2)	$0 \cdot 77684(27)$	$0 \cdot 14045(0)$	$0 \cdot 24486$ (60)
$\mathrm{C}(3)$	$0 \cdot 69543(26)$	$0 \cdot 01597(48)$	$0.33056(57)$
C(4)	$0 \cdot 59562(41)$	-0.13882(61)	$0 \cdot 43455(88)$
$\mathrm{H}(1)$	$0 \cdot 893(5)$	$0.540(6)$	$0.093(9)$
$\mathrm{H}(2)$	$0 \cdot 522(7)$	-0.078(8)	$0 \cdot 639(14)$
$\mathrm{H}(3)$	$0 \cdot 555$ (6)	-0.219(10)	$0 \cdot 269(14)$
$\mathrm{H}(4)$	$0 \cdot 657(5)$	$-0.224(10)$	0.617(12)

The 'half-hydrogens' of α-tetrolic acid each lie $0 \cdot 14$ and $0 \cdot 10 \AA$ from the plane of the carboxy-group; in the β-acid, the deviation of the hydroxylic hydrogen $\mathrm{H}(\mathrm{l})$ is $0.02 \AA$.

Bond Lengths and Angles.-Bond lengths and angles of the α - and β-forms are shown in Figures 5 and 6 respectively. The means of their σ values are $0.003 \AA$ and $0 \cdot 2^{\circ}$, and $0.004 \AA$ and 0.3° respectively. The corresponding values where one hydrogen is involved are $0.06 \AA$ and 3°, and $0.05 \AA$ and 4° respectively.

A comparison of the chemically equivalent carboncarbon bond lengths of the α - and β-molecules leads to an average deviation from the mean of $0.001 \AA$; the two sets of data are satisfactorily consistent. On the other hand, this average value is misleading as a measure of the precision in bond-length determination, for the lengths of the $\mathrm{C} \equiv \mathrm{C}$ triple bond ($1 \cdot 182,1 \cdot 178 \AA$) are $0.02 \AA$ shorter than the commonly accepted value of $\mathrm{I} \cdot 206 \AA^{11}$ This shortening of the $\mathrm{C} \equiv \mathrm{C}$ bond is probably an artefact, for it has been correlated with the neglect

[^0]TABLE 2
Observed thermal parameters $u^{i j}$ and U and standard deviations $\left(\AA^{2}\right)$ referred to axes a, b, c
(a) α-Tetrolic acid

Atom	u^{11}		u^{22}	u^{33}		u^{12}			u^{13}
$\mathrm{O}(1)$	$0 \cdot 0884$ (8)		$0 \cdot 1211(10)$	0.0721(7)		0.0678(7)			0.0295(5)
$\mathrm{O}(2)$	$0 \cdot 1005(9)$		$0 \cdot 1156(9)$	$0 \cdot 0774(6)$		$0 \cdot 0719$ (7)			$0 \cdot 0053$ (6)
$\mathrm{C}(1)$	$0 \cdot 0632(6)$		$0.0717(7)$	$0 \cdot 0726(7)$		$0 \cdot 0354(5)$			0.0283 (5)
$\mathrm{C}(2)$	$0 \cdot 0701(7)$		$0 \cdot 0823(8)$	0.0780(7)		$0 \cdot 0412(6)$			$0.0304(6)$
C(3)	0.0689 (7)		$0.0879(9)$	$0.0710(7)$		0.0431 (6)			$0.0288(5)$
C(4)	$0.0794(9)$		$0 \cdot 1189(14)$	$0.0832(9)$		$0.0639(10)$			$0.031118)$
Atom	U								
$\frac{1}{2} \mathrm{H}(1)$	0.094(15)	$\frac{1}{2} \mathrm{H}\left(\mathrm{l}^{\prime}\right)$	0.065(11)	H (2)	0.116(9)	H(3)	0.095(7)	H(4)	0.097(8)

(b) β-Tetrolic acid

Atom	u^{11}	u^{22}	u^{33}	u^{12}		u^{23}	u^{13}
$\mathrm{O}(1)$	0.0642(9)	$0 \cdot 0441$ (8)	$0 \cdot 1161(15)$	$0 \cdot 0005(7)$		$0 \cdot 0005(9)$	0.0420(10)
$\mathrm{O}(2)$	0.0548(7)	$0 \cdot 0463$ (8)	$0 \cdot 0984(12)$	-0.0044(7)		$-0.0061(8)$	$0 \cdot 0363$ (7)
C(1)	$0.0478(9)$	$0.0438(11)$	$0 \cdot 0600(12)$	-0.0066(8)		$-0.0034(9)$	$0.0138(8)$
$\mathrm{C}(2)$	0.0497 (9)	$0 \cdot 0474(10)$	$0 \cdot 0609(11)$	$-0.0027(8)$		$-0.0030(9)$	0.0170 (8)
$\mathrm{C}(3)$	$0.0474(9)$	$0 \cdot 0474(10)$	$0.0560(10)$	$-0.0017(7)$		$-0.0026(9)$	$0.0145(8)$
C(4)	$0 \cdot 0716(16)$	$0 \cdot 0600$ (14)	$0 \cdot 0745(17)$	$-0.0209(12)$		$0 \cdot 0039(13)$	$0 \cdot 0214(14)$
Atom	U	Atom	U	Atom	U	Atom	U
H(l)	0.088(13)	$\mathrm{H}(2)$	0.120(17)	$\mathrm{H}(3) \quad 0$	$0 \cdot 130(18)$	H(4)	$0 \cdot 109(14)$

Table 3
Equations of planes in the form $A x+B y+C z+D=0$ where x, y, z are fractional atomic co-ordinates; distances ($10^{3} \AA$) of relevant atoms form the planes, are given in square brackets

$$
\text { (a) } \alpha \text {-Tetrolic acid }
$$

Plane (I):

$$
\begin{aligned}
& \mathrm{O}(1), \mathrm{O}(2), \quad-3.2487 x-3.3670 y+2.5287 z-0.0564=0 \\
& \mathrm{C}(1)-(4)
\end{aligned}
$$

$\left[\mathrm{O}(1) 0, \mathrm{O}(2) 0, \mathrm{C}(1)-5, \mathrm{C}(2) 8, \mathrm{C}(3) 2, \mathrm{C}(4)-4, \frac{1}{2} \mathrm{H}(1) 138\right.$, $\left.\underset{2}{4} \mathrm{H}\left(\mathrm{l}^{\prime}\right) 91, \mathrm{H}(2)-196, \mathrm{H}(3) 948, \mathrm{H}(4)-673\right]$

Plane (II) :
$\mathrm{O}(1), \mathrm{O}(2), \quad-3 \cdot 2739 x-3 \cdot 3530 y+2 \cdot 5292 z-0.0488=0$ $\mathrm{C}(1), \mathrm{C}(2)$
$[\mathrm{O}(1) 2, \mathrm{O}(2) 2, \mathrm{C}(1)-5, \mathrm{C}(2) 2, \mathrm{C}(3)-10, \mathrm{C}(4)-21, \mathrm{H}(1) 144$, $\mathrm{H}(2) 96]$
Plane (III) : *

(b) β-Tetrolic acid

Plane (I):
$\mathrm{O}(1), \mathrm{O}(2), \quad 2.7231 x+0.5454 y+3.3846 z-3.0194=0$ C(1)-(4)
$[\mathrm{O}(1)-2, \mathrm{O}(2)-3, \mathrm{C}(1) 4, \mathrm{C}(2) 1, \mathrm{C}(3) 2, \mathrm{C}(4)-2, \mathrm{H}(1) 22$, $\mathrm{H}(2) 520, \mathrm{H}(3)-718, \mathrm{H}(4) 737]$
Plane (II) :
$\begin{array}{ll}\mathrm{O}(1), \mathrm{O}(2), & 2.7312 x+0.5552 y+3.3820 z-3.0291 \\ \mathrm{C}(1), \mathrm{C}(2)\end{array} \quad 0$
$[\mathrm{O}(1)-1, \mathrm{O}(2)-2, \mathrm{C}(1) 4, \mathrm{C}(2)-1, \mathrm{C}(3)-3, \mathrm{C}(4)-10$, H(1) 24]
Plane (III) : \dagger

$$
\begin{aligned}
& \mathrm{O}(1), \mathrm{O}(2), \quad 2 \cdot 9956 x+0.3278 y+3 \cdot 3162 z-3 \cdot 1703=0 \\
& \mathrm{C}(1), \mathrm{C}(2), \\
& \mathrm{O}\left(1^{\prime}\right), \mathrm{O}\left(2^{\prime}\right), \\
& \mathrm{C}\left(1^{\prime}\right), \mathrm{C}\left(2^{\prime}\right) \\
& {[\mathrm{O}(1)-39, \mathrm{O}(2) 66, \mathrm{C}(1) 23, \mathrm{C}(2) 15, \mathrm{C}(3) 14, \mathrm{C}(4) 10, \mathrm{H}(1)-10,} \\
& \mathrm{O}\left(1^{\prime}\right) 151, \mathrm{O}\left(2^{\prime}\right)-86, \mathrm{C}\left(1^{\prime}\right)-22, \mathrm{C}\left(2^{\prime}\right)-108, \mathrm{C}\left(3^{\prime}\right)-189, \\
& \left.\mathrm{C}\left(4^{\prime}\right)-286, \mathrm{H}\left(1^{\prime}\right) 178\right] \\
& * \text { Hydrogen bonded carboxy-dimer. } \dagger \text { Hydrogen-bonded } \\
& \text { open dimer. }
\end{aligned}
$$

Figure 5α-Tetrolic acid: (a) bond lengths $(\AA$) and (b) angles $\left({ }^{\circ}\right)\left[\mathrm{H}(4)-\mathrm{C}(4)-\mathrm{H}(2)\right.$ and $\left.\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(3) 108^{\circ}\right]$

Figure 6 -Tetrolic acid: (a) bond lengths (\AA) and (b) angles $\left(^{\circ}\right)\left[\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(3) 115, \mathrm{H}(4)-\mathrm{C}(4)-\mathrm{H}(2) 88^{\circ}\right]$
of the triple-bond charge-density in the least-squares refinement. ${ }^{2}$

The carbon chains of the α - and β-forms are approximately collinear: $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C} 179 \cdot 3$ and $179 \cdot 5^{\circ}, \mathrm{C} \equiv \mathrm{C}-\mathrm{CO}_{2} \mathrm{H}$ 177.6 and 176.4°.

The differences between the angles of $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}$ and $\mathrm{C} \equiv \mathrm{C}-\mathrm{CO}_{2} \mathrm{H}$ are significant in terms of σ, and may be correlated with the higher degree of cylindrical symmetry, about the chain axis, of the methyl as compared to the carboxy-group. The latter contains two oxygen atoms of different valence states, and most probably of different force fields acting on the carbon chain $\mathrm{C}(1)-\mathrm{C}(2) \equiv \mathrm{C}(3)$. We suggest that the system $\mathrm{H}_{3} \mathrm{C} \cdot \mathrm{C}: \mathrm{C}$ is less subject to non-cylindrical intramolecular forces than the system $\mathrm{C}: \mathrm{C} \cdot \mathrm{CO}_{2} \mathrm{H}$ which includes the carboxy-group, and so the former system is the less deformed from linearity.

The methyl hydrogens of both α - and β-tetrolic acid exhibit noticeable libratory motion as shown by the difference-Fourier electron-density sections (Figures I and 3). The refined methyl hydrogen positions of the α-form incorporate a fair measure of tetrahedral symmetry; the mean bond angle at $\mathrm{C}(4)$ is 109 with a scatter of 3°, and the mean $\mathrm{C}-\mathrm{H}$ bond length is 0.95 with a scatter of $0 \cdot 1 \AA$. The hydrogen atoms of the β-modification are less well determined; the mean bond angle at the methyl carbon is 109 with a scatter of 12°, and the corresponding values for the $\mathrm{C}-\mathrm{H}$ bond are $\mathrm{I} \cdot 0$ and $0.15 \AA$. As expected, (Figures 1 and 3) the peak heights of the methyl hydrogens of the β-form ($0 \cdot 15,0 \cdot 15$, and $0 \cdot 18 e^{\AA-3}$) are lower than those of the α-form $(0.21,0.30$, and $0.33 \mathrm{e}^{\AA-3}$).

In β-tetrolic acid, the molecules of which are linked by a set of continuous hydrogen bonds, the lengths of the carboxylic bonds are $1 \cdot 204(\mathrm{C}=\mathrm{O})$, and $\mathrm{l} \cdot 310 \AA(\mathrm{C}-\mathrm{OH})$. The corresponding bond lengths in crystalline acetic acid, ${ }^{12}$ with a hydrogen-bonded network similar to that of β-tetrolic acid, are 1.228 and $1.319 \AA$. Further comparison is provided by the bond lengths of the formic acid fragment (1.202 and $1.320 \AA$) of the formamideformic acid crystalline complex, ${ }^{13}$ in which the hydrogenbonded environment of the formic acid molecule is similar to that of β-tetrolic acid.

In α-tetrolic acid, on the other hand, the structure of which consists of hydrogen-bonded cyclic pairs, the $\mathrm{C}-\mathrm{O}$ bonds are almost equal in length ($\mathbf{1} \cdot 252$ and $1 \cdot 265 \AA$) suggesting either considerable proton tautomerism within the cyclic dimer, or orientational disorder whereby the

(III)

(IV)
carboxy-dimer is incorporated into the crystal structure in either of the two (equivalent) orientations (III) and (IV). A tautomeric state would require a symmetrical $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ hydrogen bond, which is imcompatible with the $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ distance of the α-form $(2 \cdot 649 \AA)$,
being only $0.005 \AA$ shorter than that of the unsymmetric ($\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$) hydrogen bond of the β-form. We therefore consider that the carboxy-dimer of the α-form is orientationally disordered in the lattice.
Packing.-The packing modes of the α - and β-forms are different (Figures 7, 8); the β-modification is the more stable and has, as expected, the denser structure.

Figure 7α-Tetrolic acid: packing arrangement seen perpendicular to the best plane of the shaded dimer which is close to the (llī) plane. (a) Neighbouring molecules which lie almost within the (11I) plane and (b) molecules which lie in sheets above and below the shaded dimer

The crystal structure of α-tetrolic acid consists of hydrogen-bonded centrosymmetric pairs which are linked by $\mathrm{Me} \cdot \cdots \mathrm{Me}$ contacts ($3.81 \AA$) across centres of inversion at ($1,-\frac{1}{2}, \frac{1}{2}$) and so generate approximately linear chains along the $[2 \overline{1} 1]$ direction (Figure 7a). These chains are interconnected by the vector $a-b$ to form an (approximate) sheetlike structure in the (llī) plane (Figure 7a). Within this sheet the molecules, in close contact across the inversion centre ($\left.\frac{1}{2},-\frac{1}{2}, 0\right)$, are coplanar to within $0.01 \AA$. The $\mathrm{C}(4)-\mathrm{H}(2)$ bond lies in this plane and straddles the available lone-pair lobe of $\mathrm{O}(1)[\mathrm{H}(2) \cdots \mathrm{O}(1) 2.85 \AA]$ and the π-electron system of the $-\mathrm{C}: \mathrm{C}$ - bond $[\mathrm{H}(2) \cdots \mathrm{C}(2) 3.03 \AA]$. The closest intersheet contact $(2 \cdot 77 \AA)$ is $\mathrm{H}(3) \cdots \mathrm{O}(2)$. Intermolecular contacts are listed in Table 4a.

[^1]Table 4
Interatomic distances ($\leq \mathbf{3 . 7 0} \AA$)
(a) α-Tetrolic acid

$A(000) * A(0 I 0)$		$A(000) \quad A(000)$		
$\mathrm{H}(1) \cdots \mathrm{C}(\mathrm{l})$	$3 \cdot 363$	$\mathrm{O}(1) \cdot$	$\mathrm{O}(2)$	$2 \cdot 228$
$\mathrm{H}(1) \cdots \mathrm{C}(2)$	3-193	$\mathrm{O}(1)$.	C(2)	$2 \cdot 323$
$\mathrm{O}(1) \cdots \mathrm{C}(1)$	3-309	$\mathrm{O}(1)$.	C(3)	$3 \cdot 426$
$\mathrm{O}(1) \cdots \mathrm{C}(2)$	$3 \cdot 503$	$\mathrm{O}(2) \cdot$	C(1)	$1 \cdot 265$
$\mathrm{C}(1) \cdots \mathrm{C}(1)$	$3 \cdot 662$	$\mathrm{O}(2)$	C(2)	$2 \cdot 301$
		$\mathrm{O}(2) \cdot$	$\mathrm{C}(3)$	$3 \cdot 364$
$A(000) \quad A(010)$		C(3) \cdot	$\mathrm{H}(2)$	1.902
$\mathrm{O}(2) \cdots \mathrm{C}(3)$	$3 \cdot 427$	$\mathrm{C}(3)$.	$\mathrm{H}(3)$	$2 \cdot 033$
$\mathrm{O}(2) \cdots \mathrm{H}(3)$	$2 \cdot 999$	$\mathrm{C}(3) \cdot$	H(4)	1.974
$\mathrm{C}(1) \cdots \mathrm{H}(3)$	3-315	$\mathrm{H}(2)$	H(3)	1.586
$\mathrm{C}(2) \cdots \mathrm{H}(3)$	3-226	H(2)	H(4)	$1 \cdot 474$
		$\mathrm{H}(3)$.	$\mathrm{H}(4)$	$1 \cdot 647$
$A(000) \quad A(1 \mathrm{I} 0)$				
$\mathrm{O}(1) \cdots \mathrm{H}(2)$	$2 \cdot 849$	$A(000)$	$A(00$	
$\mathrm{C}(1) \cdots \mathrm{H}(2)$	$3 \cdot 371$	$\mathrm{O}(1) \cdots$	$\mathrm{O}(2)$	$2 \cdot 649$
$\mathrm{C}(2) \cdots \mathrm{H}(2)$	3.028	$\mathrm{O}(1)$	C(l)	$3 \cdot 411$
$\mathrm{C}(3) \cdots \mathrm{H}(2)$	$3 \cdot 281$	$\mathrm{O}(2) \cdot$	C(l)	$3 \cdot 430$
$A(000) \quad A(\overline{1} 1)$		$A(000) \quad A(100)$		
$\mathrm{O}(2) \cdots \mathrm{H}(3)$	$2 \cdot 774$	O(1) .	C(3)	3.531
$\mathrm{C}(1) \cdots \mathrm{H}(3)$	$3 \cdot 289$			
$\mathrm{C}(2) \cdots \mathrm{H}(3)$	$3 \cdot 092$	$A(000)$	$A(21$	
$\mathrm{C}(3) \cdots \mathrm{H}(3)$	3-381	$\mathrm{C}(4)$	$\mathrm{H}(4)$	3-302

(b) β-Tetrolic acid

$A(000) * A(000)$	
$\mathrm{H}(1) \cdots \mathrm{O}(2)$	2.292
$\mathrm{H}(1) \cdots \mathrm{C}(1)$	1.831
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	2.210
$\mathrm{O}(1) \cdots \mathrm{C}(2)$	2.297
$\mathrm{O}(1) \cdots \mathrm{C}(3)$	3.382
$\mathrm{O}(2) \cdots \mathrm{C}(2)$	2.338
$\mathrm{O}(2) \cdots \mathrm{C}(3)$	3.418
$\mathrm{C}(3) \cdots \mathrm{H}(3)$	1.998
$\mathrm{C}(3) \cdots \mathrm{H}(4)$	2.098
$\mathrm{C}(3) \cdots \mathrm{H}(2)$	2.096
$\mathrm{H}(3) \cdots \mathrm{H}(4)$	1.463
$\mathrm{H}(3) \cdots \mathrm{H}(2)$	1.828
$\mathrm{H}(4) \cdots \mathrm{H}(2)$	1.503

$A(000) \quad B(2 \overline{\mathrm{I}} 0)$
$\mathrm{O}(2) \cdots \mathrm{C}(1) \quad 3.521$
$A(000) \quad B(200)$
$\begin{array}{llll}\mathrm{H}(1) & \cdots & \mathrm{O}(2) & 1.786 \\ \mathrm{H}(1) & \cdots & \mathrm{C}(1) & 2 \cdot 738\end{array}$
$\mathrm{H}(1) \cdots \mathrm{C}(2) \quad 3 \cdot 209$
$\mathrm{O}(1) \cdots \mathrm{O}(2) \quad 2.655$
$\mathrm{O}(2) \cdots \mathrm{C}(2) \quad 3 \cdot 477$
(2) - 34

$A(000)$	$B(201)$	
$\mathrm{O}(2) \cdots$	$\cdots \mathrm{C}(3)$	$3 \cdot 597$
$\mathrm{O}(2) \cdots \mathrm{C}(4)$	$3 \cdot 477$	
$\mathrm{O}(2) \cdots \mathrm{H}(4)$	$2 \cdot 702$	

* Co-ordinates of equivalents positions:
$A x, y, z$
$A-x,-y,-z$
$A(p q r)$ denotes fractional co-ordinates $p+x, q+y, r+z$.

The molecules of the β-form are linked by a coplanar set of continuous $\mathrm{O}-\mathrm{H} \cdots$ O hydrogen bonds ($2.655 \AA$) between carboxy-groups related by a two-fold screw axis (Figure 8).

$012 \AA$
Figure 8 -Tetrolic acid: (a) packing arrangement seen perpendicular to the best plane of the shaded molecule showing some intermolecular contacts (\AA) and angles (${ }^{\circ}$) and (b) packing arrangement seen along [010]

These hydrogen-bonded stacks along b form part of a sheet-like structure in the (101) plane (Figure 8b). Close contacts within this sheet are shown in Figure 8a. Interatomic distances are listed in Table 4b.

The hydrogen-bonding pattern exhibited by β-tetrolic acid occurs also in the crystal structure of formic ${ }^{14}$ and acetic acids ${ }^{12}$ and in the α-form of oxalic acid. ${ }^{15}$

We acknowledge partial support by a MINERVA grant.
[1/1289 Received, July 26th, 1971]
${ }_{14}$ F. Holtzberg, B. Post, and I. Fankuchen, Acta Cryst., 1953, 6, 127.

15 E. G. Cox, M. W. Dougill, and G. A. Jeffrey, J. Chem. Soc., 1952, 4854.

[^0]: ${ }^{8}$ H. W. Kaufman and L. Leiserowitz, Acta Cryst., 1970, B, 26, 422.

 9 J. Berghius, IJ. M. Haanappel, M. Potters, B. O. Loopstra, C. H. MacGillavry, and A. L. Veenendaal, Acta Cryst., 1955, 8, 478.
 ${ }^{10}$ R. McWeeny, Acta Cryst., 1951, 4, 513.
 ${ }^{11}$ Chem. Soc. Special Publ., No. 11, 1958.

[^1]: 12 I. Nahringbauer, Acta Chem. Scand., 1970, 24, 453.
 13 I. Nahringbauer and G. Larsson, Arkiv Kemi, 1968, 30, 91.

